Non-uniform Interpolatory Subdivision Based on Local Interpolants of Minimal Degree

نویسندگان

  • Kestutis Karciauskas
  • Jörg Peters
چکیده

This paper presents new univariate linear non-uniform interpolatory subdivision constructions that yield high smoothness, C and C, and are based on least-degree spline interpolants. This approach is motivated by evidence, partly presented here, that constructions based on high-degree local interpolants fail to yield satisfactory shape, especially for sparse, non-uniform samples. While this improves on earlier schemes, a broad consideration of alternatives yields two technically simpler constructions that result in comparable shape and smoothness: careful pre-processing of sparse, non-uniform samples and interlaced fitting with splines of increasing smoothness. We briefly compare these solutions to recent non-linear interpolatory subdivision schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-uniform interpolatory subdivision via splines

We present a framework for deriving non-uniform interpolatory subdivision algorithms closely related to non-uniform spline interpolants. Families of symmetric non-uniform interpolatory 2n-point schemes of smoothness C are presented for n = 2, 3, 4 and even higher order, as well as a variety of non-uniform 6-point schemes with C continuity.

متن کامل

Polynomial-based non-uniform interpolatory subdivision with features control

Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform r...

متن کامل

Interpolatory Subdivision Curves with Local Shape Control

In this paper we present a novel subdivision scheme that can produce a nice-looking interpolation of the control points of the initial polyline, giving the possibility of adjusting the local shape of the limit curve by choosing a set of tension parameters associated with the polyline edges. If compared with the other existing methods, the proposed model is the only one that allows to exactly re...

متن کامل

A Controllable Ternary Interpolatory Subdivision Scheme

A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. Its support is computed. The C and C convergence analysis are presented. To elevate its controllability, a modified edition is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be used to control the shape of the c...

متن کامل

Surface Design Using Locally Interpolating Subdivision Schemes

Non-uniform multivariate subdivision schemes are constructed, which generate limit functions interpolating some of the initial control points. Our schemes diier from the known interpolatory subdivision schemes, in that only some of the original control points are interpolated, and not the control points in every level. These new schemes are combinations of a non-interpolatory schemes with diier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012